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Experimental evidence of bouncing localized structures in a nonlinear optical system is reported. Oscilla-
tions in the position of the localized states are described by a consistent amplitude equation, which we call the
Lifshitz normal form equation, in analogy with phase transitions. Localized structures are shown to arise close
to the Lifshtiz point, where nonvariational terms drive the dynamics into complex and oscillatory behaviors.
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During the last years localized structures have been ob-
served in different fields, such as domains in magnetic ma-
terials f1g, chiral bubbles in liquid crystalsf2g, current fila-
ments in gas discharge experimentsf3g, spots in chemical
reactions f4g, pulses f5g, kinks f6g and localized two-
dimensionals2Dd statesf7g in fluid surface waves, oscillons
in granular mediaf8g, isolated states in thermal convection
f9,10g, solitary waves in nonlinear opticsf11–13g, and cavity
solitons in lasersf14g. Localized states are patterns that ex-
tend only over a small portion of a spatially extended and
homogeneous systemf15g. Different mechanisms leading to
stable localization have been proposedf16g. Among these,
two main classes of localized structures have to be distin-
guished, namely those localized structures arising as solu-
tions of a quintic Swift-Hohenberg-like equationf16g and
those that are stabilized by nonvariational terms in the sub-
critical Ginzburg-Landau equationf17g. The main difference
between the two cases is that the first-type localized struc-
tures have a characteristic size that is fixed by the pinning
mechanism over the underlying pattern or by spatially
damped oscillations between homogenous statesf16,18g,
whereas the second-type ones have no intrinsic spatial
length, their size being selected by nonvariational effects and
going to infinity when dissipation goes to zero. In both cases,
nonvariational effects may lead to dynamical behaviors of
localized structuresf19g. Variational models based on a gen-
eralized Swift-Hohenberg equation have been proposed to
describe the appearance of localized structures in nonlinear
optics f20g. However, a generalization, including nonvaria-
tional terms, is generically expected to apply even in optics,
as happens, for instance, in semiconductor laser instabilities
f21g, giving rise to dynamical behaviors of localized struc-
tures, such as propagation and oscillations of their positions
f22g.

We report here an experimental evidence of localized
structures dynamics in a liquid crystal light valvesLCLV d
with optical feedback. It is already known that, in the simul-
taneous presence of bistability and pattern-forming diffrac-
tive feedback, the LCLV system shows localized structures
f12,23–25g. Recently, rotation of localized structures along
concentric rings have been reported in the case of a rotation
angle introduced in the feedback loopf26g. Here, we fix a
zero rotation angle and we show a dynamical behavior—the
bouncing of two adjacent localized structures—that is not
related to imposed boundary conditions but is instead a direct
consequence of the nonvariational character of the system

under study. Theoretically, we show that the LCLV system
has several branches of bistability connecting a homoge-
neous state to a patterned one and we derive an amplitude
equation accounting for the appearance of localized struc-
tures. This is a one-dimensional model, which we call the
Lifshitz normal form equationf22g, characterizing the dy-
namics of localized structures close to each point of nascent
bistability.

Description of the experiment. The experimental setup is
shown in Fig. 1. The LCLV is composed of a nematic liquid
crystal film sandwiched in between a glass and a photocon-
ductive plate over which a dielectric mirror is deposed. The
liquid crystal film is planar alignedsnematic directornW par-
allel to the wallsd, with a thicknessd=15 mm. The liquid
crystal filling our LCLV is the nematic LC-654, produced by
the research center Organic Intermediates and Dye Institut,
NIOPIK sMoscowd f27g. It is a mixture of cyano-biphenyls,
with a positive dielectric anisotropyD«=«i−«'= +10.7 and
large optical birefringence,Dn=ni−n'=0.2, where«i and
«' are the dielectric permittivitiesi and' to nW, respectively,
andni andn' are the extraordinarysi to nWd and ordinarys'
to nWd refractive index, respectively. Transparent electrodes
over the glass plates permit the application of an electrical
voltage across the liquid crystal layer. The photoconductor
behaves like a variable resistance, which decreases for in-
creasing illumination. The feedback is obtained by sending
back onto the photoconductor the light that has passed
through the liquid-crystal layer and has been reflected by the
dielectric mirror. This light beam experiences a phase shift

FIG. 1. Experimental setup:nW liquid crystal nematic director;
Pin and Pfb input and feedback polarizers;L1 and L2 confocal
25 cm focal length lenses. −L is the free propagation length, nega-
tive with respect to the plane on which a 1:1 image of the front side
of the LCLV is formed.
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that depends on the liquid crystal reorientation and, on its
turn, modulates the effective voltage that locally applies to
the liquid crystals.

The feedback loop is closed by an optical fiber bundle and
is designed in such a way that diffraction and polarization
interference are simultaneously presentf12g. The optical free
propagation length is fixed toL=−10 cm. At the linear stage
for the pattern formation, a negative propagation distance
selects the first unstable branch of the marginal stability
curve, as for a focusing medium. The angles of the polarizers
are at 45° with respect to the liquid crystal directornW. The
free end of the fiber bundle is mounted on a precision rota-
tion and translation stage, to avoid rotation or translation in
the feedback loop.

For this parameter setting, asV0 increases there is a series
of successive branches of bistability between a periodic pat-
tern and a homogeneous solution. In Fig. 2 we report the
spatially averaged feedback intensitykIwl measured for a
fixed value of the input intensity,I in=0.75 mW/cm2, and for
varying V0, by integrating the images on the near-field
charge-coupled devicesCCDd camera ssee Fig. 1d. The
abrupt changes ofkIwl correspond to the appearance of lo-
calized structures and thus roughly indicate the locations of
the nascent bistability points. The peak value intensity of the
localized structures is approximately twice the average value
kIwl. In the LCLV system, the bistability between homog-
enous states results from the subcritical character of the Frée-
dericksz transition, when the local electric field, which ap-
plies to the liquid crystals, depends on the liquid crystal
reorientation anglef28,29g. Here, we limit our study to the
bistable branch located aroundV0=13.2 Vrms sfrequency
5 kHzd, however similar observations can be obtained close
to any other of the nascent bistability points.

We have carried out one-dimensional experiments, in or-
der to avoid the influence of any optical misalignmentssuch
as small driftsd on the dynamics of localized states. A rect-
angular mask is introduced in the optical feedback loop, just
in contact to the entrance side of the fiber bundle. The width
of the aperture isD=0.50 mm, whereas its length isl
=20 mm. The size of each localized structures isL
.350 mm, so that the transverse aspect ratioD /L.1 is
small enough for the system to be considered as one-
dimensional and the longitudinal aspect ratiol /L.60 is
large enough for the system to be considered as a spatially
extended one.

Instantaneous snapshots of bouncing localized structures,
together with their spatial profiles, are shown in Figs. 3 and
4, for V0=13.2Vrms andI in=0.95 mW/cm2. The correspond-
ing spatiotemporal plot is displayed in Fig. 5sbd, showing the
periodic oscillations for the positions of the structures. In the
same figure, Fig. 5sad, it is shown the spatiotemporal plot
corresponding to stationary localized structures, as observed
for a slightly decreased input intensity,I in=0.90 mW/cm2,
and for the same value ofV0. Figure 5scd displays the spa-
tiotemporal diagram corresponding to aperiodic oscillations
in the structure positions, as observed forV0=13.3Vrms and
I in=0.90 mW/cm2. The dynamical behavior of localized
structures is very sensitive to parameter changes and, even
though their appearance is clearly located around each point
of nascent bistability, their stability range is smaller than the
width of the bistable region. When losing stability, localized
structures either form clusters or annihilate, depending if

FIG. 2. Spatially averaged feedback intensitykIwl sunits are the
gray values,g.v., on the CCD camerad as a function ofV0; input
intensity I in=0.75 mW/cm2.

FIG. 3. Snapshots showing bouncing localized structures:sad t
=0.0, sbd 1.0, scd 1.3, sdd 1.7, sed 2.1, sfd 2.4, sgd 2.8 s.

FIG. 4. Localized structures profile,Iwsx0,yd. x0 is the location
of the dashed line in Fig. 3;sad t=0.0, sbd 1.3, scd 1.7 s.
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they are driven on the pinning or depinning side of the
bistable regionf18g. However, a careful experimental char-
acterization of the pinning front is a work still in progress.

Theoretical description. The light intensityIw reaching the
photoconductor is given by f12g, Iw= I in /2ue−isL/2kd]xx

3s1+e−ib cos2 udu2, wherex is the transverse direction of the
liquid crystal layer,b cos2 u is the overall phase shift expe-
rienced by the light traveling back and forth through the
liquid crystal layer;b=2kdDn, wherek=2p /l is the optical
wave numbersl=633 nmd.

As long asI in is sufficiently small, that is, of the order of
a few mW/cm2, the effective electric field,Eef f, applied to
the liquid crystal layer can be expressed asEef f=GV0/d
+aIw, whereV0 is the voltage applied to the LCLV, 0,G
,1 is a transfer factor that depends on the electrical imped-
ances of the photoconductor, dielectric mirror and liquid
crystals, anda is a phenomenological dimensional parameter
that describes the linear response of the photoconductorf29g.

Let us call usx,td the average director tilt.u=0 is the
initial planar alignment whereasu=p /2 is the homeotropic
alignment corresponding to saturation of the molecular reori-
entation. The dynamics ofu is described by a local relaxation
equation of the form

t]tu = l2]xxu − u +
p

2
S1 −Î GVFT

GV0 + adIwsu,]xd
D s1d

with Vef f=Eef fd=GV0+adIwsu ,]xd.GVFT the effective volt-
age applied to the liquid crystals,VFT the threshold for the
Fréedericksz transition andl the electric coherence length.
The above model has been deduced by fitting the experimen-
tal data for the open loop response of the LCLVf29g and it is
slightly different with respect to the one proposed in Ref.
f12g. It is important to note that a rigorous derivation of the
response function of the LCLV would require a modal ex-
pansion along the longitudinal direction of the liquid crystal
layer.

The homogeneous equilibrium solutions areu0=0 when
Vef føGVFT and u0=sp /2ds1−ÎGVFT/Vef fd when Vef f

.GVFT. Above the Fréedericksz transition and by neglecting
the spatial terms, we can find a closed expression for the
homogeneous equilibrium solutions: u0=sp /2d(1
−ÎGVFT/ hGV0+aI inf1+cossb cos2 u0dgj). The value ofVFT

is set to 3.2Vrms, as measured for the LCLVf28,29g, and the
graph ofu0sV0,I ind is plotted in Fig. 6. In agreement with the

bistability branches observed experimentally, several points
of nascent bistability can be distinguished, corresponding to
the critical points whereu0sV0,I ind becomes a multivalued
function.

Close to each point of nascent bistability, and neglecting
spatial derivatives, we can developu=u0+u+¯ and derive a
normal form equation describing an imperfect pitchfork bi-
furcationf15g, ]tu=h+mu−u3+h.o.t, wherem is the bifurca-
tion parameter andh accounts for the asymmetry between
the two homogeneous states. Higher-order terms are ruled
out by the scaling analysis, sinceu,m1/2, h,m3/2, and ]t
,m, m!1. If we now consider the spatial effects, due to the
elasticity of the liquid crystal and to the light diffraction, the
system exhibits a spatial instability as a function of the dif-
fraction length and, since the spatial dependence ofIw is
nonlocal, the dynamics is a nonvariational one.

The confluence of bistability and spatial bifurcation give
rise to a critical point of codimension three, which we call
the Lifshitz point, in analogy with the triple point introduced
for phase transitions in helicoidal ferromagnetic statesf30g.
Close to this point, we derive an amplitude equation, which
we call the Lifshitz normal formf22g,

]tu = h + mu − u3 + n]xxu − ]xxxxu + du]xxu + cs]xud2, s2d

where]x,m1/4, n,m1/2 accounts for the intrinsic length of
the systemsdiffusiond, d,Os1d, and c,Os1d. The term
]xxxxu describes a super diffusion, accounting for the short
distance repulsive interaction, whereas the terms propor-
tional tod andc are, respectively, the nonlinear diffusion and
convection. The full and lengthy expressions of these coeffi-
cients, as a function of the LCLV parameters, will be re-
ported elsewheref31g. Note that the same model has been
recently deduced for instabilities in a semiconductor laser
f21g.

FIG. 5. Spacesverticald-time shorizontald diagrams showingsad
two stationary localized structures,sbd periodic, andscd aperiodic
oscillations of the structure positions. The total elapsed time is 94 s.

FIG. 6. The multivalued functionu0sV0,I ind. The shaded areas
show the location of the nascent bistability points.
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The model shows bistability between a homogeneous and
a spatially periodic solutions and therefore exhibits a family
of localized structures. Depending on the choice of
parameters, localized structures may show periodic or
aperiodic oscillations of their position. We can fixm and h
by varyingV0 andI in. More interesting is the behavior of the
effective diffusion term n, which has the
form n~ l2+hpbL cos2fsb /2d cos2 uogsin 2u0j /4khGVo
+aI inf1+cossb cos2 u0dgj. Only when the optical free propa-
gation lengthL is negative it is possible, by increasing the
input intensityI in, to drive the system through the Lifshitz
point sn changes its sign from positive to negatived. This
means that stable localized structures can be obtained only
for a focusing Kerr-like nonlinearity. Once crossed the Lif-
shitz point, the nonlinear diffusion coefficient is negative and
the convection coefficient is positive. In this region of pa-
rameters, numerical simulations of Eq.s2d show a qualitative
agreement with the experimental observations, as shown in
Fig. 7.

Conclusion. We have shown a localized structure dynam-
ics, consisting of a bouncing behavior between two adjacent
structures, and we have described it by a universal model,
the Lifshitz normal form equation. The Lifshitz equation,
which reduces to the generalized Swift-Hohenberg equation
for h=d=c=0, has already been used to describe the transi-
tion from smectic to helicoidal phase in liquid crystalsf32g
and the pulse dynamics in reaction diffusion systemsf33g.
When one neglects the cubic and the nonlinear diffusion

terms sd=0d, it reduces to the Nikolaevskii equation that
describes longitudinal seismic wavesf34g.
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