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Experimental evidence of bouncing localized structures in a nonlinear optical system is reported. Oscilla-
tions in the position of the localized states are described by a consistent amplitude equation, which we call the
Lifshitz normal form equation, in analogy with phase transitions. Localized structures are shown to arise close
to the Lifshtiz point, where nonvariational terms drive the dynamics into complex and oscillatory behaviors.
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During the last years localized structures have been ohdnder study. Theoretically, we show that the LCLV system
served in different fields, such as domains in magnetic mahas several branches of bistability connecting a homoge-
terials[1], chiral bubbles in liquid crystalg2], current fila- neous state to a patterned one and we derive an amplitude
ments in gas discharge experimep8s, spots in chemical equation accounting for the appearance of localized struc-
reactions [4], pulses[5], kinks [6] and localized two- tures. This is a one-dimensional model, which we call the
dimensionaKZD) Statei?] in fluid surface waves, oscillons Lifshitz normal form equatior[zz:l, Characterizing the dy_

in granular medig8], isolated states in thermal convection namics of localized structures close to each point of nascent
[9,10], solitary waves in nonlinear opti¢d1-13, and cavity  pigiapility.

solitons in laser$14]. Localiz_ed states are patterns that ex- Description of the experimenThe experimental setup is
tend only over a small portion of a spatially extended andyy .y in Fig. 1. The LCLV is composed of a nematic liquid
homogeneous systef5]. Different mechanisms leading to crystal film sandwiched in between a glass and a photocon-

stable localization have been propodd®]. Among these, : ; ; R .
two main classes of localized structures have to be distingucnve plate over which a dielectric mirror is deposed. The

guished, namely those localized structures arising as sold'—qu'd crystal film s planar alignednematic director par-

. G ; ; ; llel to the wallg, with a thicknessd=15 um. The liquid
tions of a quintic Swift-Hohenberg-like equatidi6] and a . . ;
those that are stabilized by nonvariational terms in the subS'yStal filling our LCLV is the nematic LC-654, produced by

critical Ginzburg-Landau equatidi 7). The main difference the research center Orga_nic Int.ermediates and Dye Institut,
between the two cases is that the first-type localized strudNIOPIK (Moscow [27]. It is a mixture of cyano-biphenyls,
tures have a characteristic size that is fixed by the pinnindVith @ positive dielectric anisotrope=g,~&, = +10.7 and
mechanism over the underlying pattern or by spatiallyarge optical birefringenceAn=n,-n, =0.2, whereg, and
damped oscillations between homogenous stlés1g, €. are the dielectric permltt|V|§|e$and Lton, respectlvely,
whereas the second-type ones have no intrinsic spati@ndn; andn, are the extraordinargi to n) and ordinary(L
length, their size being selected by nonvariational effects antP 1) refractive index, respectively. Transparent electrodes
going to infinity when dissipation goes to zero. In both casesQver the glass plates permit the application of an electrical
nonvariational effects may lead to dynamical behaviors of/0ltage across the liquid crystal layer. The photoconductor
localized structuref19]. Variational models based on a gen- behaves like a variable resistance, which decreases for in-
eralized Swift-Hohenberg equation have been proposed tgfeasing illumination. The feedback is obtained by sending
describe the appearance of localized structures in nonline®@ck onto the photoconductor the light that has passed
optics [20]. However, a generalization, including nonvaria- through the liquid-crystal layer and has been reflected by the
tional terms, is generically expected to apply even in opticspllelectrlc mirror. This light beam experiences a phase shift
as happens, for instance, in semiconductor laser instabilities
[21], giving rise to dynamical behaviors of localized struc- L
tures, such as propagation and oscillations of their positions b
[22].

We report here an experimental evidence of localized
structures dynamics in a liquid crystal light valyeCLV)
with optical feedback. It is already known that, in the simul-
taneous presence of bistability and pattern-forming diffrac-
tive feedback, the LCLV system shows localized structures
[12,23-25. Recently, rotation of localized structures along
concentric rings have been reported in the case of a rotation
angle introduced in the feedback lopp6]. Here, we fix a FIG. 1. Experimental setupi liquid crystal nematic director;
zero rotation angle and we show a dynamical behavior—th@, and Py, input and feedback polarizers; and L, confocal
bouncing of two adjacent localized structures—that is nobs cm focal length lenses.L-is the free propagation length, nega-
related to imposed boundary conditions but is instead a direcive with respect to the plane on which a 1:1 image of the front side
consequence of the nonvariational character of the systewf the LCLV is formed.
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FIG. 2. Spatially averaged feedback intengity) (units are the
gray valuesg.v, on the CCD camejaas a function ofVy; input FIG. 3. Snapshots showing bouncing localized structu@st
intensity 1;=0.75 mW/cnd. =0.0,(b) 1.0, (c) 1.3,(d) 1.7, (e) 2.1, (f) 2.4,(g) 2.8 .

that depends on the liquid crystal reorientation and, on its ) )

turn, modulates the effective voltage that locally applies to nStantaneous snapshots of bouncing localized structures,

the liquid crystals. together with their spatial profiles, are shown in Figs. 3 and
The feedback loop is closed by an optical fiber bundle andh for Vo=13.2Viys andl;;=0.95 mW(cn%_. The correspond-

is designed in such a way that diffraction and polarizationnd Spatiotemporal plot is displayed in Figb, showing the

interference are simultaneously presgi®]. The optical free periodic oscillations for the positions of the structures. In the

propagation length is fixed to=—-10 cm. At the linear stage Same figure, Fig. @), it is shown the spatiotemporal plot

for the pattern formation, a negative propagation distanc@orresppndmg to stationary Iocgllzed'structures, as observed

selects the first unstable branch of the marginal stabilitfor @ slightly decreased input intensity,=0.90 mW/cnd,

curve, as for a focusing medium. The angles of the polarizergnd for the same value &f. Figure c) displays the spa-

are at 45° with respect to the liquid crystal direcforThe _t|otemporal dlagram _correspondmg to aperiodic oscillations

free end of the fiber bundle is mounted on a precision rotal" Ehe structure positions, as observed ¥ 13.3 Vs and

tion and translation stage, to avoid rotation or translation irlin=0-90 mW/cni. The dynamical behavior of localized

the feedback loop. structures is very sensitive to parameter changes and, even
For this parameter setting, ¥g increases there is a series though their appearance is clearly located around each point

of successive branches of bistability between a periodic paf?f nascent bistability, their stability range is smaller than the

tern and a homogeneous solution. In Fig. 2 we report thavidth of the bistable region. When losing stability, localized

spatially averaged feedback intensitl,) measured for a structures either form clusters or annihilate, depending if

fixed value of the input intensity;,=0.75 mW/cm, and for

varying V,, by integrating the images on the near-field 150 W(xo.y) (G-V.)

charge-coupled devicéCCD) camera(see Fig. 1 The

abrupt changes dfi,,) correspond to the appearance of lo- 100

calized structures and thus roughly indicate the locations of 50

the nascent bistability points. The peak value intensity of the

localized structures is approximately twice the average value 0Oy —o93 08 o9 12

(). In the LCLV system, the bistability between homog- (a) y (mm)

enous states results from the subcritical character of the Frée-

dericksz transition, when the local electric field, which ap- 150 Iw(xo.y) (@-v.)

plies to the liquid crystals, depends on the liquid crystal

reorientation angl¢28,29. Here, we limit our study to the 100

bistable branch located around,=13.2 V,,s (frequency 50

5 kHz), however similar observations can be obtained close

to any other of the nascent bistability points. 00— 03 06 09 13
We have carried out one-dimensional experiments, in or- (b) y (mm)

der to avoid the influence of any optical misalignmé&nich

as small drifty on the dynamics of localized states. A rect- 150 Iw(xg,y) (g-v-)

angular mask is introduced in the optical feedback loop, just

in contact to the entrance side of the fiber bundle. The width 100

of the aperture isD=0.50 mm, whereas its length is 50

=20 mm. The size of each localized structures As

=350 um, so that the transverse aspect rdlioA=1 is 003 05 09 3

small enough for the system to be considered as one- © ' y (mm) '

dimensional and the longitudinal aspect ratioc\ =60 is
large enough for the system to be considered as a spatially FIG. 4. Localized structures profilé,(Xo,Y). X is the location
extended one. of the dashed line in Fig. 3p) t=0.0, (b) 1.3,(c) 1.7 s.
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FIG. 5. Spacdvertica)-time (horizonta) diagrams showinga)
two stationary localized structured) periodic, and(c) aperiodic 0.4
oscillations of the structure positions. The total elapsed time is 94 s.

they are driven on the pinning or depinning side of the
bistable regior{18]. However, a careful experimental char-
acterization of the pinning front is a work still in progress.

Theoretical descriptioniThe light intensityl,, reaching the
photoconductor is given by[12], 1,=1;,/2]e /K%«
X(1+e 8 cof %), wherex is the transverse direction of the
liquid crystal layer,3 cos @ is the overall phase shift expe-
rienced by the light traveling back and forth through the
liquid crystal layer;8=2kdAn, wherek=2/\ is the optical
wave numbeA =633 nmn).

As long asl;, is sufficiently small, that is, of the order o
a few mW/cnf, the effective electric fieldE., applied to

v 10 5
9 (V"ms)

FIG. 6. The multivalued functioy(Vy, li,). The shaded areas
show the location of the nascent bistability points.

¢ bistability branches observed experimentally, several points
of nascent bistability can be distinguished, corresponding to

the liquid crystal layer can be expressed Bg=T'V,/d the critical points wheredy(Vy,l;,) becomes a multivalued

+al,, whereV, is the voltage applied to the LCLV, @I  function. _ N .
<1 is a transfer factor that depends on the electrical imped- C!0Se to each point of nascent bistability, and neglecting
ances of the photoconductor, dielectric mirror and liquigSPatial derivatives, we can develep ¢ +u+--- and derive a

crystals, and is a phenomenological dimensional parameter’0rmal form equation describing an imperfect pitchfork bi-

. © T3 . :
that describes the linear response of the photocond[@ghr  furcation[15], qu=»+uu-u+h.o.t wherep is the bifurca-
Let us call 6(x,t) the average director tiltd=0 is the tion parameter andy accounts for the asymmetry between

initial planar alignment whereag=1/2 is the homeotropic the two homogeneous states. Higher-order terms are ruled

: . o V2 32
alignment corresponding to saturation of the molecular reori®Ut Py the scaling analysis, sinee~u™, 7~ u”*, andd,

entation. The dynamics afis described by a local relaxation — U< 1.1f we now consider the spatia_l effe(_:ts, dl_Je to the
equation of the form elasticity of the liquid crystal and to the light diffraction, the

system exhibits a spatial instability as a function of the dif-
TV fraction length and, since the spatial dependencé,ois
1 \/ﬁ) (1) nonlocal, the dynamics is a nonvariational one.
o+ adly(6,3y) The confluence of bistability and spatial bifurcation give
; _ _ ; rise to a critical point of codimension three, which we call
= =I'Vy+ > - o oF . : P
WIth Veri=Eerd=1"Vo+ adl (6, 5) > T'Ver the effective volt- - 7 e point, in analogy with the triple point introduced

age applied to the liquid crystal¥g; the threshold for the L . > .
Fréedericksz transition andthe electric coherence length. 2){022?3%:{:?2}'&”3\/? dheer:l\fglgr?l;rirgﬂtmuzgn:c;ﬁa?itg?ﬂv{/hich

The above model has been deduced by fitting the experimen- S
tal data for the open loop response of the LJR2@] and it is we call the Lifshitz normal fornj22],
slightly different with respect to the one proposed in Ref.
[12]. It is important to note that a rigorous derivation of the U= 7+ ul = U + vdyll = dyyoll + dUdeld + c(3,U)%, (2)
response function of the LCLV would require a modal ex-
pansion along the longitudinal direction of the liquid crystal where 9, ~ u'4, v~ u'*2 accounts for the intrinsic length of
layer. the system(diffusion), d~0O(1), and c~0O(1). The term
The homogeneous equilibrium solutions a&g=0 when 5 1 describes a super diffusion, accounting for the short
Verr<I'Ver and  6p=(m/2)(1-VI'Ver/Ver) When Ve distance repulsive interaction, whereas the terms propor-
>TI'Ver. Above the Fréedericksz transition and by neglectingional tod andc are, respectively, the nonlinear diffusion and
the spatial terms, we can find a closed expression for theonvection. The full and lengthy expressions of these coeffi-
homogeneous  equilibrium  solutions: 6y=(w/2)(1  cients, as a function of the LCLV parameters, will be re-
—IVer/{TVo+al; [1+cogB cog 6y)]}). The value ofVer  ported elsewherg31]. Note that the same model has been
is set to 3.2V, as measured for the LCL\28,29, and the  recently deduced for instabilities in a semiconductor laser
graph of0y(Vo, ;) is plotted in Fig. 6. In agreement with the [21].

_2 ™
k0= 17000 0+
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The model shows bistability between a homogeneous anc
a spatially periodic solutions and therefore exhibits a family
of localized structures. Depending on the choice of |
parameters, localized structures may show periodic or
aperiodic oscillations of their position. We can fixand »
by varyingV, andl;,. More interesting is the behavior of the
effective  diffusion term v, which has the
form vocl2+{mBL cog[(B/2) coF B,]sin 26,}/ 4k{T'V,
+al,[1+cogB cog 6y)]}. Only when the optical free propa-
gation lengthL is negative it is possible, by increasing the
input intensityl;,, to drive the system through the Lifshitz
point (v changes its sign from positive to negadiv&his
means that stable localized structures can be obtained only
for a focusing Kerr-like nonlinearity. Once crossed the Lif-
shitz point, the nonlinear diffusion coefficient is negative and
the convection coefficient is positive. In this region of pa-
rameters, numerical simulations of E&) show a qualitative
agreement with the experimental observations, as shown in
Fig. 7. terms (d=0), it reduces to the Nikolaevskii equation that

Conclusion We have shown a localized structure dynam-describes longitudinal seismic wavis].
ics, consisting of a bouncing behavior between two adjacent
structures, and we have described it by a universal model, We gratefully acknowledge René Rojas for help in calcu-
the Lifshitz normal form equation. The Lifshitz equation, lations. The simulation softwam@mMx is property of INLN.
which reduces to the generalized Swift-Hohenberg equatioithis work has been supported by the ACI Jeunes of the
for »=d=c=0, has already been used to describe the transirench Ministry of Researct218 CDR2. M.G.C. thanks
tion from smectic to helicoidal phase in liquid cryst§&2]  the support of Programa de insercion de cientificos Chilenos
and the pulse dynamics in reaction diffusion systdB®.  of Fundacion Andes, FONDECYT Project No. 1020782, and
When one neglects the cubic and the nonlinear diffusioFONDAP Grant No. 11980002.

FIG. 7. Numerical simulations of E¢2) for »=-0.02, u=
—0.02,»=-1.00,c=2.00 andd=-1.51, showing two bouncing lo-
calized structuregspatial profile in the insgt
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